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Abstract

We describe a model-based motion filtering process that when
applied to human arm motion data leads to improved arm ges-
ture recognition. By arm gestures, we mean movements of the
arm (and positional placement of the hand) that may or may
not have any meaningful intent. Arm movements or gestures
can be viewed as responses to muscle actuations that are guided
by responses of the nervous system. Our method makes strides
towards capturing this underlying knowledge of human perfor-
mance by integrating a model for the arm based on dynamics
and containing a control system. We hypothesize that by embed-
ding the human performance knowledge into the processing of
arm movements, it will lead to better recognition performance.
We present details for the design of our filter, our analysis of the
filter from both expert-user and multiple-user pilot studies. Our
results show that the filter has a positive impact on the recogni-
tion performance for arm gestures.

1. Introduction

Gesture recognition techniques have been studied extensively
in recent years because of their potential for application in user
interfaces. It has long been a goal to apply the “natural” com-
munication means that humans employ with each other to the
interfaces of computers. People commonly use arm and hand
gestures, ranging from simple actions of “pointing” to more
complex gestures that express their feelings and allow commu-
nication between each other. Having the ability to recognize
arm gestures by computer creates many possibilities to improve
application interfaces, especially those requiring difficult data
manipulations (e.g., 3D transformations). Pointing operations
would certainly be an effective means to infer directional infor-
mation such as where to move an object in the computer en-
vironment. To date no method has been found for arm gesture
recognition that is both very accurate and extendable to different
sets of gestures. Typical approaches (e.g., HMMs, neural net-
works) have focused on applying analytical methods for break-
ing down motion sequences and recognizing patterns.

The human model-based approach takes into consideration
that while a person is making gestures, the resulting motions
and poses are played out by a known, rather than an unknown,
process. The gestures can be viewed as responses of a skeletal
frame to muscle actuations that are made in response to con-
trol signals originating in the nervous system. The structure of
the skeleton, joints, and musculature, is well known and well
studied. The neural control systems that actuate the muscles
are becoming better understood. With a solid model of human
dynamics and control, much of the analytical heuristic guess-
work might be eliminated. The arm is a good subject for testing
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model-based approaches because it is an articulated structure
with well understood musculature and fairly large inertias that
must have a significant effect on gesture performance.

In our work, we have designed a filter for enhancing the sig-
nal leading to the gesture recognizer. Our motion adaptation
filter integrates both physical and control models of human ges-
tural actions into the process. The motion adaptation works by
using two filters: one is augmented with a “learned” parametric
gesture sequence and control system, while the other has no aug-
mentation. Our method for incorporating process knowledge—
the model and its dynamics—is the extended Kalman filter,
though any process estimation filter can be used that can han-
dle non-linearities. The squared difference between the outputs
of both filters is summed and normalized, giving a score that can
be used by the recognition system.

Our working hypothesis is that the motion adaptation filter
will improve the unknown signal’s quality enough to improve
or simplify the recognition process. We tested the hypothesis by
integrating the filter with a simple template gesture recognition
system, although our filter can be integrated with any standard
type of gesture recognition system. We tested the system with
an expert user performing multiple sets of gestures and devised
a multiple-user pilot study to determine the impact that our filter
has on arm-movement recognition performance.

2. Related Work

Here we first give an overview of the most common recognition
methods and highlight their benefits and shortcomings. Then we
briefly describe relevant work that utilizes human model-based
approaches and related studies involving hand and arm gestures.
More complete details can be found in surveys by Watson [1],
Aggarwal and Cai [2] and Pavlovic et al. [3].

2.1. Overview of Recognition Methodologies

The common methodologies that have been used for motion and
gesture recognition are: (1) template matching [1], (2) neural
networks (also known as the feature-based approach) [1], (3)
statistical [4, 5, 6] and (4) multimodal probabilistic combina-
tion [7, 8]. By far the most popular recognition methods are
the neural networks (e.g., [9, 10, 11, 12, 13]) and the statistical
method, hidden Markov models (HMMs) (e.g., [14, 15, 16, 17]).
Each of these methods has a set of drawbacks which either affect
their performance or limit their utilization by users. One of the
major drawbacks is that they depend on user-specific training
and parameter tuning.

The template approach compares the unclassified input se-
quence with a set of predefined template patterns. The algorithm
requires preliminary work for generating the set of gesture pat-
terns, and has poor recognition performance typically due to the
difficulty of aligning the input with the template patterns [1].



The neural network approach works by pre-determining a set
of common discriminating features, estimating covariances dur-
ing a training process, and using a discriminator (e.g., the clas-
sic linear discriminator [18]) to classify gestures. The drawback
of this method is that features are manually selected and time-
consuming training is involved [1].

The HMM method is a variant of a finite state machine char-
acterized by a set of states, a set of observation symbols for each
state, and probability distributions for state transitions, observa-
tion symbols and initial states [4]. The state transitions, which
are hidden to the observer, generate an observation symbol from
each state. The basic premise of the HMM is to infer a state se-
guence that produces a sequence of observations. Learning the
state sequence can help to understand the structure of the under-
lying model that generates the observation sequence. The major
drawbacks of the HMMs are: (1) they require a set of training
gestures to generate the state transition network and tune pa-
rameters; (2) they make assumptions that successive observed
operations are independent, which is typically not the case with
human motion and speech [19].

In a multimodal recognition process, two or more human
senses are captured and/or two or more capturing technologies
are combined together to recognize gestures. The multiple in-
puts are processed by a classifier, which rates the set of possi-
ble output patterns with a value based upon the likelihood of
a match. The set of probabilities for each input are then com-
bined in a manner to be able to select the most likely pattern.
Many groups have explored combining speech and gesture to-
gether (e.g., Cohen and Oviatt [7, 8], Codella et al. [20], Vo and
Waibel [21]).

2.2. Methods Utilizing Human Model-Based Ap-
proaches

Human model-based approaches integrate a model of human
motion, typically approximated as a dynamic process and con-
trol system, into the process of filtering motion capture data of
human movements. Model-based approaches using dynamics
seems to have first appeared in Pentland and Horowitz [22] and
others (e.g., [23, 24]). The method has been shown to improve
tracking by helping reduce the search space required to deter-
mine the position and orientation of a tracked object for the next
motion state. This includes estimating position and orientation
when interference between the tracking equipment and tracked
object occur [25].

Model-based approaches have been utilized by Zordan and
Hodgins [26], Metaxas [25] and others for generating motion
appropriate for animated characters. Badler [27] experimented
with model-based approaches to simulate human-like virtual ac-
tors in a system he developed called Jack.

Wren and Pentland [28] applied dynamics to a 3D skeletal
model of the body for a tracking application. They applied 2D
measurements from image features and combined them with the
extended Kalman filter to drive the 3D model. Their resulting
tracking system was able to tolerate temporary image occlusions
and the presence of multiple people in the tracked area. In more
recent work [29] they explored the notion that people utilize
muscles to actively shape purposeful motion. They were able to
extract models of purposeful actions from a system they built.
This reenforces the notion that there is important information

from the underlying structure of human motion that can be in-
corporated in the recognition process.

Rohr [30] studied human movements from image sequences
by incorporating models from medical motion studies. He
specifically analyzed people walking by applying measurements
of the body joints and vertical displacement of the torso from
a “walking” study to build a model of motion. The model
was integrated with image input data using the Kalman filter
to estimate 3D positions and postures of the subjects walking
in the images. Others have performed similar work, including
Hogg [31].

We explored the use of a model-based approach for arm mo-
tion recognition performance in earlier work [32]. We were not
able to find enough evidence that the approach improved recog-
nition performance at that time. We felt this was due to the lack
of sophistication of the model and control system, which was
based on a simple particle model representing the position of
the wrist and its associated dynamics.

2.3. Arm and Hand Gesture Studies

The hand has been studied extensively for computer human in-
teraction [33, 34, 35, 36, 37, 38, 39, 40]. However, fewer studies
have been performed on gestures involving the arm in addition
to the hand. Sturman [39] developed a system for recognizing
gestures for orienting construction cranes. Morita et al. [41]
shows how to interpret gestures from a musical conductor by
tracking the tip of the wand. Baudel and Beaudouin-Lafon[42]
designed an application that uses hand and arm gestures for con-
trolling a computer presentation. Kahn et al. [43] studied point-
ing operations and Campbell et al. [14] performed a study in-
volving T’ai Chi gestures.

3. Background

Here we give the background for methods that we utilized and
integrated in the design of our filter.

3.1. Extended Kalman Filter

The extended Kalman filter (EKF) [44] estimates both the time
sequence of states of an input data stream and a statistical model
of that data stream. The EKF differs from the standard Kalman
filter [45] in that it can be used to estimate a process that is non-
linear and/or handle a measurement relationship to the process
that is non-linear. The EKF can be augmented by a dynamic
model of the system being tracked, and knowledge of the relia-
bility of this model. Simply described, the filter is a set of time
update equations that estimate the next state vector, current error
covariance and the Kalman gain. The Kalman gain affects the
weighting of measurement data versus the control model in de-
termining the next state vector estimate. If the dynamic model
is left out or is unreliable, the Kalman gain is high and the filter
simply smoothes the input data.
The EKF’s prediction equations may be written

Xi_-|—1 = f(xia u;, 0) (1)
Py, = APAT +W,Q:W[T,

where f estimates the a priori state vector x;, ,, x; is the current
state vector, u; is the process model vector at the current time



step, P; and P, are the current and a priori estimated error
covariances, Q; is the process model error covariance, A and
W are the Jacobians of f with respect to x and w, respectively,
and w is a vector of random variables.

The filter’s update equations may be written

Ki = PrHT(HPTHT 4 ViRVT)™
x; = x; + Ki(z; — h(x;,0)) 2
P, = (I — KiHi).P,;,

where K; is the current Kalman gain, v is a vector of random
variables, h relates the state vector to the measurement vector
z;, R; is the measurement error covariance, and H and V are
the Jacobians of A with respect to x and v.

3.2. Lagrangian Formulation for Dynamics

The Lagrangian formulation for dynamics is particularly appro-
priate for articulated systems. The Lagrangian

is the difference between the kinetic energy Ej, and potential
energy E, of the system as a function of state . The state is
a set of generalized joint coordinates and its rate ¢ is a set of
related velocities. The Lagrangian formulation for the dynamics
of a system is

d 0L oL

dt 3q; 0q;

= 715, 1=1,..,m, 4)

where 7 is the set of externally applied forces and torques [46].

Solutions to Equation 4 can be found in closed form, which
are more efficient and readily parameterizable than the open
form derivations generated by the Featherstone algorithm [47],
which is a very efficient rendition of the Newton-Euler approach
to dynamics [48]. On the other hand, the open form derivations
do have the advantage that they can be easily extended to handle
large sets of joint-space configurations.

4. Motion Adaptation Filter

The design of our model-based motion adaptation filter is shown
in Figure 1. It contains two extended Kalman filters: one aug-
mented with a model of the human arm, dynamics update and
control system, the other unaugmented and containing only the
arm model and dynamics update components. The input or un-
known motion sequence is passed through each filter, compared
and a score is computed, which is used as output for the motion
adaptation filter.

The unaugmented filter, in effect, smoothes the input motion
sequence since it has no control system. The augmented filter
attempts to influence the raw input motion sequence to follow a
learned motion sequence. We illustrate this notion in Figure 2
by showing five different motion sequences (arc, line, wave, cir-
cle and angle) as influenced by an arc motion sequence. Each
sequence starts on the right side and proceeds towards the left.
The darkest grey line indicates the “influencing” arc sequence,
the lightest grey is the input sequence, and the mid-grey is the
output sequence. The images show the degree of influence that
the arc has on the input sequences, which is controlled by the
Kalman gain in the EKF.

n n )
Urfaugmented Filte

Motion State Estintio Dynamics Updat

R 1Q

e o ¢ PartiaDery.
. Update w.r.t. Stats

Xj+1

Integrator kf

Sum Squar] _Score
Differenceg

g G Parametric Learne
Motion Sequenc
Forward i
L p r Size ofz;
Dynamics Registratior !
4 with % Initial
OrientatiorZj
Arm
Model vi

Unknown
Motion
Sequence

Augmented Filte

i Forward Ui Inverse
Dynamics Dynamics|

g q

DrivingTorqu
Controller

""" |PartialDeriv}
Ww.r.t. State| Integrator

Motion State Eitirmi{)i Dynamics Updatr Control Systen

Figure 1: Motion Adaptation Filter
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Figure 2: Five Gestures Influenced by an Arc Motion Sequence

The unaugmented and augmented filters both contain units
for motion state estimation and dynamics update. The state es-
timation unit blends the input motion sequence with the current
state vector and passes the data to the dynamics update process.
There, forward dynamics are performed on the state vector pro-
ducing angular accelerations. These are numerically integrated
generating the next state vector. The next state vector is fed back
into the system at the Kalman blend and sent to be compared
with the output from the augmented filter. The Kalman gain is
updated from the current error covariance which is subsequently
updated by data from the dynamics update process.

The augmented filter also contains a control system, which is
composed of a driving torque controller and a blending function.
Torques used by the controller are derived from the parametric
learned motion sequence and model and applied to the forward
dynamics of the system. After numerical integration, an inter-
mediate state vector is passed to the blending function where
it is mixed with the aligned and parameterized learned mation
sequence producing the next state vector. The motivation be-
hind the augmented filter is that if the input motion sequence
matches closely to the learned motion sequence (e.g., in Fig-
ure 2 the arc in arc module), then the resulting trajectory should
be very similar to the input. Thus the trajectories output by the
unaugmented and augmented filters will be nearly identical, and
the output score will be a very small number. However, if the
input motion sequence is dissimilar (e.g., in Figure 2 the line in
arc module) to the learned sequence, the trajectories will differ
greatly and likewise the score will be large.
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Figure 3: Articulated Arm Model

In the next few sections we describe the details of each of the
components of the motion adaptation filter.

4.1. Arm Model

A dynamic articulated model of a human arm is integrated into
the filter. The arm model consists of a 3-DOF shoulder joint,
a 1-DOF elbow joint and cylinder linkages between the shoul-
der and elbow, and between the elbow and wrist. The model
is shown in Figure 3. We ignore the wrist twist in the lower
arm. We also capture the three degrees of freedom for the torso,
which is used to produce a relative coordinate system for the
arm. The three degrees of freedom from the torso are elimi-
nated after the coordinate transformation takes place between
the torso and shoulder.

The position of the wrist and elbow can be determined by us-
ing the kinematics equations of motion for the arm model. The
equations are parameterized using joint angles for each degree
of freedom of the joints in the model. They are

(~luSsCs, —1luSsSy, —luCo)T,
R.(¢)Ry(0)(—11S,Ca, —11SySa, —1Cy)T, -
where xg and xw are the positions of the elbow and wrist, re-
spectively, Iy and [, are the corresponding lengths of the upper
and lower arm, R (¢) and R, (6) are rotation matrices about the
respective axes z and y, and S and C are sines and cosines of
angles of rotation 8, ¢, a and p.

XE
Xw

4.2. Motion State Estimation

Motion state estimation is used to predict the state vector at
the next time step for the current state of measured input, dy-
namic model and statistical models of the measured and control
systems. The statistics for the measurement process and con-
trol system are in the form of error covariance matrices and are
pre-determined using training and measurements from the user
workspace. They are used by the EKF along with data from the
dynamics update process to determine the current Kalman gain.

The Kalman gain is critical for state estimation in the system
and requires knowledge from the dynamics and measurement
process. This data includes the four (8x8)-Jacobian matrices

A, W, H and V from Equations 1 and 2 which relate the pro-
cess and measurement system’s state vectors to the current state
vector. The elements of these matrices are predetermined sym-
bolically and updated numerically as the filter operates. They
are

1 t

¢ 1
A = 8g ag ],W = [ 8g 8g
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and H = V = I where | is the 8x8-identity matrix. The ma-
trices A and W are updated by taking the partial derivatives
with respect to the current state vector of their respective com-
plete forward dynamics equation g. The augmented and unaug-
mented filters have different formulations. The formulation for
the augmented filter is

9(q,q,wi,wa) = Bf'*l[%(il+W2)T8%[B’](q+w2)_
Bl(q+w2)+7(qmaqm)]a
(6)
and for the unaugmented filter is
g(a,4,wi,wa) = BUL(@+wa)T Z[B](@+ws)—
B'(q+wy)],
()

where w; and wy are vectors of random variables represent-
ing “white” noise with zero mean and constant variance associ-
ated with the process model’s state vector and velocities, respec-
tively. B and B are the inertia matrices defined in Section 4.3
composed of members from the state vector q and angular ve-
locities g. B' and B’ are similar matrices to B and B but wher-
ever an element of q and ¢ appears, the appropriate random
variable from the vectors w; or wy is added to that member.
For example, if § appears in an element of matrix B, then it is
replaced with 8 + w11 in B’, where wy; is the first element in
the vector wy, since @ is the first element in q.

4.3. Dynamics Update

The dynamics update process provides parameter updates for
motion state estimation and the control system. It takes the
current state of the system and the arm model (and a set of
torques for the augmented filter), and performs forward dynam-
ics to produce the parameter update functions g (described in
Section 4.2) and the angular accelerations ¢. We used Euler nu-
merical integration [49] to update the next state vector using the
accelerations. We could have used a more sophisticated integra-
tion method, but we found that Euler integration was satisfac-
tory.

Here we show the derivation of the forward dynamics equa-
tion for the 4-DOF articulated arm model, which generates the
angular accelerations and is used to derive the complete forward
dynamics equations (Equations 6 and 7).

In order to derive the dynamics equations, the masses,
lengths and moments of inertia of the arm segments are needed.
Each arm segment is represented by a thin cylinder rotating
about its endpoint. The center of mass for each cylinder is
estimated using data from a study on anthropometric parame-
ters for the human body in [50]. The data gives estimations
for the segmental center of mass (COM) locations expressed in
percentages of the segment lengths. These are measured from
the proximal end of the segments. The moment of inertia for



each segment is computed by combining the inertia tensor of
the representative cylinder body and inertial component asso-
ciated with the shift of its COM to the endpoint. The inertial
components associated with the shift of the COM are

(—ruSeCy, —T1SsSs, —ruCh)7,
Rz(¢)Ry(0)(—rLSpC’a,—rLSpSa,—rLCp)T,( )

8
where xr and x, are the positions in Cartesian world space of
the estimated COMs of the upper and lower arm, respectively,
and ry and ry, are the corresponding radial distances from the
shoulder and elbow, respectively. Time derivatives are taken
to get the angular velocities at the estimated COMs of the arm
segments. These are

XU
XL

Xi = Jiq,i={U,L} (9)

where the Jacobian matrices Jy = 2 and J, = %L, and

i = (6,¢,¢&,p)T. The inertial components are

Iy =
I, =

my JE Ju + Ibodyy,

mzJE T + Tbodyr, (10)

where Iy and Iy, are the inertial components of the upper and
lower arm, respectively, mg and m g, are the estimated masses of
the arm segments, and Ibodyy and Ibodyy, are diagonal matri-
ces representing the thin cylinder body inertias about each pa-
rameterized axes 6, ¢, a and p. The elements in Tbodyy and
Ibodyy, are filled by converting the cylinder’s Euclidean coordi-
nates to spherical coordinates.

The angular velocities and inertias are used to compute the
Kinetic energy

Ek = %qTB% (11)

where B = Iy + I. The potential energy is given as

E, = —mygryCi

12
—mrglluCi — 11.8,CaSs +11.CiCy], 1)
where g is the gravitational constant. The two energy terms are
used for the Lagrangian, L, of Equations 3 and 4. The dynamics
equations are computed and solved for angular acceleration

i = B '[3¢"Z[Blg— B+, (13)

where 7 is the set of applied torques.

4.4. Control System

Our control system, in effect, acts analogously to the motor
nervous system in the human body by providing guidance for
how the arm model is applied to update the motion state vec-
tor. The control system specifically influences how the learned
motion sequence acts on the current motion state vector. It is
composed of a driving torque controller and a blending func-
tion. The driving torque controller uses data from the learned
motion sequence and arm model and performs inverse dynam-
ics, which generates torques for the dynamics update process.
The blending function combines the learned motion sequence

with an intermediate state vector from the dynamics update pro-
cess. The degree of its influence is controlled by a fixed pre-
determined blending factor. The learned motion sequence also
remains fixed throughout the iteration of the filter. We see the
driving torque controller as analagous to an open-loop predic-
tive control and the blending function as analagous to propri-
oceptive and sensory feedback. Our control system has simi-
larities to the model reference adaptive control (MRAC) system
presented in [51, 52], which incorporates a reference model of a
motion sequence, inverts its dynamics and applies the resulting
torques in a controlled manner to the input data.

The torques for the driving torque controller are computed
using the inverse dynamics torque formulation

T(g,q9) = 7(¢™,¢™)+ $i"&Bq— Bg. (14)
where 7 is the vector of applied torques from the controller, and
joint angles ¢™ and angular velocities ¢ are from the influenc-
ing gesture sequence. The joint configurations are transformed
so that they correlate with the learned model’s joint configura-
tions.

Since there is no feedback in the driving torque controller,
the torques can be precomputed. When T'(q, ¢) is applied to
the dynamics it influences the motion of the model to follow a
trajectory analogous to the influencing sequence. However, it
is not necessarily strongly influencing the raw motion data to
move towards the learned motion sequence. The strength of the
influence is controlled by a scaling parameter k.. that is applied
to the Kalman filter’s process model error covariance matrix Q).
This affects how much the system “trusts” the raw motion data
versus the dynamic model. As k. changes it directly impacts
how the reported controller error relates to the measurement er-
ror in the system. As a result, the Kalman filter’s gain matrix K
(Equation 2), stabilizes differently, therefore changing how the
Kalman filter weights input motion versus controller influence.

The blending function supplements the driving torque con-
troller by providing more guidance to the state estimation. The
driving torque controller provides the dynamics drive for the
model, but it does not always provide sufficient guidance. The
influencing motion sequence’s torques may be nonlinear with
respect to the joint configurations, but the tracking system per-
forms blending of joint configurations linearly. Therefore, due
to linear blending, small changes in the joint configurations can
produce large changes in the dynamics. This directly affects
how the driving torque controller performs. The blending func-
tion is intended to counteract this effect.

The blending function incorporates the current state of the
system with the raw motion data from a learned motion se-
quence. The raw motion data includes the joint angles and an-
gular velocities. This data is linear with respect to the motion
state configurations of the system. The blending function that
we use is

Xi+1 = b(XZ + AtX,) + (1 — b)X;n7 (15)

where x; = [q,4]T, %; = [¢,d]%, x = [¢™,¢™]T, At is the

%

current time step, and b is the blending factor.
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5. Analysisof Filter

In order to test the effectiveness of our new filter, we imple-
mented it, selected a difficult—to—discriminate gesture dataset,
and ran user studies.

5.1. Design of Test System

We designed a system to test the motion adaptation filter by
adapting a simple template-style gesture recognizer. We chose
the template recognition system because it is easy to implement
and is very easy to understand. However, our filter can work
with most standard recognition architectures (e.g., one based on
neural networks). The template architecture works by compar-
ing the unknown input sequence with each gesture pattern. For
our case, the unknown input is passed through a motion adap-
tation filter associated with each gesture (see Figure 4 for an
overview).

Human motion data is brought into the system by a motion
tracking unit and segmented by searching for long pauses in the
motion sequences. The choice of tracking system is arbitrary,
as long it can generate a continuous sequence of motion states.
For this architecture, the output is distributed in parallel to N
copies of the filter. Each of the filters is custom-tuned for a
specific gesture. The output of the filters is a set of scores that
are processed by the recognition unit. The scores are the squared
differences of the internal unaugmented and augmented filters.

In our system, we used a magnetic tracking system simply
to ensure a degree of assurance that a reliable stream of input
data is sent to our processing filter. There are obviously more
accurate and reliable input technologies (e.g., acoustic and iner-
tial) and vision systems, which do not guarantee the continuous
reliable stream of input, but do have the potential to produce
more accurate tracking. We emphasize that our filter can accept
tracking data from any motion capturing technology.

Our system captures orientations of the lower arm, upper
arm, and torso and returns four Euler angles. Angular veloci-
ties are estimated from the angles using time difference meth-
ods. The set of angles and angular velocities makes up a motion
state vector. The sequence of state vectors is sent to the motion
state estimation unit.

5.2. Selection of a Hard-to-Discriminate Gesture
Dataset

Our first step for analyzing the performance of the filter was to
select a set of gestures that are hard to distinguish from each
other. The selection criterion was determined by observing the
physical trajectories at the wrist position for each gesture while
being performed by a user. The wrist trajectories for the ges-
ture dataset we selected for the introductory experiments are
shown in Figure 5.  This gesture set was chosen because of
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Figure 6: Overlapping Features Embedded in Gesture Pairs

the overlapping features embedded in many of the pairs of ges-
tures (see Figure 6 for an illustration). Two distinct gestures
that have overlapping motion segments, especially if they start
with the same motion sub-sequence, are more difficult to dis-
tinguish than dissimilar nonoverlapping gestures. A properly
tuned EKF bases its initial output more on the input data than
the dynamic model. But, when it converges to a stable blend-
ing state, the dynamics of the system takeover. If two gestures
have similar starting trajectories and abruptly change after the
dynamics become more dominant, the system will initially fail
to discriminate between the two gestures because the derived
dynamics of the system are similar. Eventually the mixture of
the two dissimilar segments of the gestures will influence and
change the system behavior.

For our experiments, we considered the direction in which
the motion trajectory was performed by the user as a means to
distinguish the gesture sequences. Thus the five basic shapes
shown in Figure 5 produce ten different gestures (two for each
shape). We used combinations of the five basic shapes to gen-
erate gesture datasets and test the performance, generalizability
and extensability of the filter in the first four expert-user exper-
iments.

5.3. Filter Parameters

Our filter requires a set of parameters that must be predeter-
mined and tuned for individual gestures. The EKF requires error
covariance data for the measurement and control processes. The
dynamics update requires measurements from the user’s arm.
The control system requires a blending constant and the learned
motion sequence.

5.3.1. Parameter Deter mination

To compute the measurement error covariance we affixed three
motion tracking receivers in the user workspace to a stationary
configuration analogous to that of the right arm. We recorded
1000 samples continuously and estimated the error. The error
covariance matrix is computed using the angles and angular ve-
locities. The angular velocities are estimated by treating the set
of samples as a continuous stream of data and taking time dif-
ferences with respect to the sampling period. The measurement
error needs to be computed once for a given set of hardware and
workspace.

The control process error is computed by using the pre-
recorded gesture sequences. A parametric learned motion se-



guence for each gesture type is selected by determining the clos-
est fitting trajectory to a normal trajectory that is computed from
the sample set of gestures. The error matrix is estimated using
the mean squared error between the parametric learned motion
sequence and the rest of the sequences. The control error needs
to be computed for every gesture sequence.

5.3.2. Subject Measurements

Some of the parameters needed for the filters are taken from
measurements of the users. The filters require the lengths, radii
and masses of the upper and lower arm. These parameters are
obtained by combinations of two methods: direct measurements
and estimation from anthropometric parameters of the human
body. The lengths are determined by either directly measuring
the distance between the shoulder and elbow, and elbow and
wrist, or estimating them from the height and sex of the user.
Estimations of anthropometric parameters of the human body
are made according to the procedure outlined in Hall [50]. The
radii are obtained by measuring the circumferences of the arm
segments at the midpoint. The masses are obtained by weigh-
ing the subject and estimating the arm segment masses based
on a study with mass measurements taken from cadavers. The
masses for the arm segments are determined as percentages of
the whole body mass for males and females.

5.3.3. Parameter Tuning

In order to use the EKF, specific parameters have to be tuned in
order to get desirable guidance in the recognition units. One
of the parameters that needs tuning is a multiplicative factor
kaug Used to scale the augmented filter’s control error covari-
ance. There is one such scaling factor for each control error
covariance matrix. The scaling factor is used to adjust the level
of “trust” in the filter by changing the control error with respect
to the measurement error. The larger k. is, the more the filter
output depends on the input. The smaller k.4 is, the more the
filter output depends on the controller and dynamic model. As
a result the Kalman gain matrix, essential for the Kalman blend,
changes.

For the unaugmented filter, we used a multiplicative scaling
factor £ to adjust how much smoothing is performed on the in-
put gesture sequence. This parameter, again, is applied to the
control error covariance. & acts in the same manner as kquq
does for the augmented filter. % is adjusted by lowering its value
until the input data trajectory becomes smooth and still follows
roughly the same trajectory. If it is decreased too much, the
output trajectory will follow the unguided dynamic model too
much.

Another parameter to be tuned is the blending factor b. This
is applied in the blending function, which performs a blend of
the intermediate state vector xi7% and the parametric learned
motion sequence. This factor is important because it weights
how the raw data is blended with the parametric learned motion
sequence at the motion state level. The Kalman blend does not
directly incorporate knowledge of the parametric learned mo-
tion sequence. We used one blending factor for all the gesture
types.

To show how we made our choice of parameters for the aug-
mented filter, we devised a simple experiment that showed the
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Figure 7: Effects of Varying Augmented Filter Parameters

effects of adjustments to the parameters k., and b. For demon-
stration purposes we chose an arc gesture as our raw data and a
line as the learned motion sequence. The arc and line sequences
refer to the complete motion of the arm as it traces out a spatial
arc and line, respectively, at the wrist. In Figure 7 we illustrate
the effect on the wrist position, over the full motion sequence,
of varying the parameters k,,, and b from 0 to 1. In the figure,
the light line is the input arc sequence, the black line is the line
sequence and the dark grey line is the adapted motion.

The figure shows that the changes are not necessarily linear
with respect to either parameter. In addition, both parameters
produce different effects in the adapted trajectory. The con-
troller scaling parameter appears to influence the raw motion
data to morph into a rough form of the influencing sequence,
but it does not align very well with it. This is evident as you
look at the images in the left-most column. The blending factor
appears to blend the two trajectories fairly well by itself, but not
completely. An appropriate combination of the two parameters
produces the best blend. For the different gestures we used vary-
ing values for kg4, but we chose a fixed value for b. We tried
to make our selection based on the graphs in the figure. b was
chosen from the graphs that produced a mixed trajectory with a
bit more influence from the learned motion sequence.

An important consideration when selecting the parameters is
the degree of alignment of the input gesture with respect to the
learned gesture. In the experiments, we ask the users to extend
their right arm in a perpendicular direction to the front side of
their body. The gestures they are asked to perform are then cen-
tered around that hand position as best as possible. Rough align-
ment and scaling is applied to the parametric learned gesture
in addition to the parameterizing that is necessary to perform
a matching comparison. This is the registration phase, which
can be seen on the right side of the filter diagram in Figure 1.
If the parametric learned gesture does not align very well with
the gesture it is supposed to accept, it creates a high score for
the comparison. This is due to our method for evaluation which
compares the augmented and raw input trajectories. If the align-
ment is extremely bad we could not adjust the k.., parameter to
“trust” the model as much. In most cases this is not a problem,



but for a difficult dataset to recognize, such as the basic five ges-
tures in Figure 5, some gestures will be improperly classified.

5.3.4. Sensitivity Analysis

If we were to run a full user study on human subjects of widely
varying mass and height, it would be important to understand
how much of an impact parameter changes have on the dynam-
ics of the system. If it can be shown that the system is relatively
insensitive to changes in the parameters then it may be consid-
ered to be more generalizable and potentially more powerful.
We analyzed the sensitivity of a few of the body parameters
(summarized in Schmidt [53]), but did not determine enough
meaningful information to make conclusions about the general-
izability of our filter.

5.4. Expert User Experiments

We set out to verify the effectiveness of the filter integrated into
a gesture recognizer by devising a set of experiments to be per-
formed by an expert user. These were designed to test the per-
formance of the recognizer with and without our filter. We also
wanted to ascertain something about how generalizable and ex-
tensable our filter is with respect to different and larger gesture
datasets, respectively. To accomplish these goals, we ran five
experiments. Before beginning we pre-recorded a database of
gestures from the user, computed the parameters and learned
models, and performed manual parameter tuning.

5.4.1. Accuracy Performance

The purpose of the first experiment is to determine the perfor-
mance rating of the recognizer integrated with and without our
filter. We used the five gestures from Table 1, and recorded
100 samples for each gesture. The gestures were first aligned
with the learned motion sequences, then the learned motion se-
guences were parameterized to match the size of the input se-
quence. We supplied both the filtered (our method) and unfil-
tered recognizers with the 500 gestures. The results are given in
Table 1.

Table 1: Results of Experiment #1

B el AV @A

Arc Line | Wave | Circle | Angle Totals
Unfiltered

99/100 | 99/100 |100/100|100/100 | 99/100 || Approach

99% | 99% | 100% | 100% | 99% 99.4%

98/100 | 100/100 |100/100 {100/100 | 99/100 OAu;E:Ic};r:ﬁd

98% | 100% | 100% | 100% | 99% 99.4%

They show that both methods have an accuracy rating of 99.4%.
The fact that both methods produced acceptable results turned
out to be only coincidental for the unfiltered approach, which
was later shown to be very inconsistent. We analyzed this
dataset further and noticed that the gestures were fairly spatially
regular with respect to each other. For example, there was not
an extensive amount of variation due to alignment, skewing and
scaling among the like gestures in this set.

b) Arcin Arc Module
Figure 8: Arm Model Motion in Time

To get a better idea of how our method works, refer back
to Figure 2. The arc in the arc module shows the best match
between the augmented and the unaugmented (effectively the
learned motion sequence) trajectories. The rest of the cases
show that the learned arc sequence has a large influence on the
data running through the augmented filter which is evident by
the output augmented trajectories. This effect pulls the aug-
mented and raw data curves apart. The sequences in Figure 8
illustrate a small set of state transitions from the three arm mod-
els used in generating the trajectories for the line and the arc in
the arc module. The figures show frames from a 3D simulation
of the corresponding schematic 4-DOF arm models. The arm
states are very similar for the arc in the arc module, but very
different for the line in the arc module.

5.4.2. Generalizability

To test the generalizability of our approach, we ran a second
experiment. In the experiment we used the reverse-order wrist
trajectories for the gestures used in the first experiment (a com-
pletely unique dataset). We recorded 100 samples for each of
the five gestures and purposely added noise into the samples to
test the robustness of our filter. Then we passed them into the
gesture recognizer twice, with and without our filter in the sys-
tem. The resulting performance ratings are given in Table 2.

In this case, the accuracy of the recognizer integrated with our
filter proved to be far superior than without it. The performance
rating for our filtered approach is 98.8%, while the unfiltered is
79.8%.

5.4.3. Extensability

For the third experiment, we examined the extensability of our
approach. To do this, we increased the number of distinct ges-
tures that the recognizer had to distinguish. We decided to use
the two sets of gestures from the first two experiments and com-
bine them into one database. Although diagrams make the two
gesture sets appear similar, the motions that the human subject



Table 2: Results of Experiment #2
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Arc Line | Wave | Circle | Angle Totals

60/100 [100/100 | 78/100 | 62/100 | 99/100 ‘i\gg'rfa“ceﬁ
60% | 100% | 78% | 62% | 99% 79.8%

98/100 [100/100 |100/100 |100/100 | 96/100 %nggﬁd
98% | 100% | 100% | 100% | 96% 08.8%

has to perform with the arm are totally different. When we per-
formed the same experimental procedure as before we obtained
the results in Table 3.

Table 3: Results of Experiment #3
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Arc Line | Wave | Circle | Angle | Arc Line | Wave | Circle | Angle Totals
Unfiltered
99/100 | 99/100 |100/100 {100/100 | 99/100 | 60/100 |100/100 | 78/100 | 62/100 | 99/100 || Approach
99% 99% | 100% | 100% | 99% 60% | 100% | 78% 62% 99% 89.6%

98/100 |100/100 | 100/100 [100/100 | 99/100 | 98/100 |100/100 |100/100 |100/100 | 96/100 Oxgg;ggﬁd

98% | 100% | 100% | 100% | 99% | 98% | 100% | 100% | 100% | 96% || 99.1%

Here our method has an accuracy rating of 99.1% while the un-
filtered approach has a rating of 89.6%. This gives us a good
indication that our method is extensable to larger size gesture
datasets.

5.4.4. More Generalizability Experiments

At this point we decided to revisit the first experiment with the
hope of making it more difficult to distinguish the gestures than
before. The goals of the new experiment were to show more
generalizability with our method. In order to do this, we re-
placed the line and the wave with a triangle and another form
of the arc. The new arc gesture is generated using a bend at the
elbow instead of the straight arm motions used for the original
arc. By our definition of arm gestures (i.e. movements of the
arm that may or may not have any meaningful intent) and our
analysis of only the “end-effector” position of the arm at the
wrist, we do not make any distinction between the new and old
arc gesture since both have identical wrist trajectories. The tri-
angle gesture resembles the angle gesture in the first time steps,
but deviates from it near the end. Our assumption was that this
choice of gestures would be harder to discriminate. 75 trials
were run for each gesture. The approximate gesture shapes and
results of this experiment are given in Table 4.

The results show that the new gesture set was a bit harder to
recognize by both methods. But our filtered approach showed
an accuracy rating of 98.1% compared with the unfiltered ap-
proach’s rating of 95.2%. The results were again encouraging
with regard to our method’s consistency and accuracy, and also
that it generalizes to different gestures quite well.

For our fifth experiment we ran 50 trials with five new ges-
tures, each significantly different from the others. In addition,
we decided to make a choice of somewhat natural gestures. The

Table 4: Results of Experiment #4

Arc | Triangle(BERXAM Circle | Angle || Totals
7575 | 68/75 | 6575 | 75775 | 7475 || RoTRered
100% | 90.7% | 86.7% | 100% | 98.7% || o5 20¢
7475 | 7475 | 7275 | 74075 | 74075 OA“:)F',:r'c',taeCrﬁd
98.7% | 98.7% | 96.0% | 98.7% | 98.7% || 98196

goal of the experiment was to determine if our method works
well with gestures that are very easy to distinguish because they
are quite distinct and are more natural. Our choice of gestures
included the “zorro” sign, Catholic cross, salute, a stop and a
waving gesture. Diagrams of the motions of the wrist and re-
sults of the experiment are shown in Table 5.

Table 5: Results of Experiment #5

Zorro Cg%%gc Waving| Stop | Salute || Totals

filt
50/50 | 46/50 | 50/50 | 50/50 | 50/50 }iggm‘ggﬁ
100% | 92% | 100% | 100% | 100% || o8 4%
50150 | 50/50 | 5050 | 50/50 | 5050 || R
100% | 100% | 100% | 100% | 100% || 10006

The results show that our method was 100% accurate on this
gesture set, while the unfiltered approach achieved an accuracy
rating of 98.4%.

5.4.5. Discussion

In the experiments, we evaluated the accuracy performance,
generalizability and extensability of our filter when integrated
in a recognition system. We made steps to ensure that it was dif-
ficult to distinguish among gestures by carefully selecting ges-
ture datasets with overlapping motion traits. When compared
with the recognizer with no filter attached, our method showed
improved recognition performances. Our results from the five
experiments show that our method is consistently accurate with
rates ranging from 98.1% to 99.4% and extends to multiple ges-
ture datasets. This compares very favorably with the unfiltered
method whose accuracy ranged from 79.8% to 99.4%.

6. Pilot Study

We performed a pilot study involving six different subjects, in
order to evaluate our model-based approach in a more general
sense (i.e. across different subjects). We also ran a followup
study to test how we can reduce the amount of parameter tun-
ing that is required for each of the filters. The details of each
experiment are given in the next sections.



6.1. Subject Selection

For the experiment, we selected three males and three females,
with varying anatomical proportions. The sex discriminant was
desired to accommodate for potential unequal mass distribution
that exists between male and female subjects in the arm based
on muscle and bone proportions. The proportions we were con-
cerned with were the lengths, radii and masses of the upper and
lower right arm. The human subjects were selected without re-
gard to ethnicity, age, social or cultural backgrounds. The only
screening requirement we had was a visual observation of size
proportions in order to assure a subject pool of varying anatom-
ical proportions.

6.2. Subject Measurements and Setup

Each experiment proceeded by taking physical measurements of
the subjects. Their body weight was measured and used to esti-
mate the masses of the upper and lower right arm. The lengths
of each arm segment were obtained by measuring the distance
from the shoulder to the elbow and from the elbow to the wrist.
The radii of the arm segments were approximated from mea-
surements of the circumference of the middle of the upper and
lower arm segments.

The subjects had body weights ranging from 55 to 87 kg and
heights ranging from 1.6 to 1.9 m, giving us a broad spectrum
of masses and lengths for the user’s arm proportions. The upper
arm lengths varied from 28 to 36 cm and the lower arm lengths
from 23 to 27 cm. The upper arm radii varied from 3.66 to
5.25 cm and the lower arm radii from 3.18 to 4.38 cm.

Next we attached two motion tracking receivers to the human
subjects on their right arm, using velcro straps at the wrist and
near the elbow. A third receiver was affixed to their shoulder
with tape.

6.3. Pilot Experiment 1

In the first subject experiment our goal is to compare the differ-
ence between augmenting the recognition process with a model
versus not augmenting the process. The subjects were asked
to perform 25 trials of each of five different gestures, using the
right arm. In between each set of trials for one gesture, the
subject was given ample rest time to help avert any fatigue asso-
ciated with the repetitive motions they were asked to make. We
used the same five gestures as illustrated in Table 5, the zorro,
Catholic cross, stop, salute and waving gestures.

The results we obtained were measurements of how well
each recognition system predicted the correct gesture sequence.
The performance rating for each method—the unaugmented and
our model-based approach—were computed by averaging the
performances for each of five different gestures. The perfor-
mance for each gesture was computed by averaging the results
from each of the six subjects. We then made a histogram chart
(see Figure 9) comparing the two sets of data.

The data for each user was analyzed by setting the body pa-
rameters for the recognizer to their measurements before run-
ning the accuracy tests. The rest of the parameters for the recog-
nizer were individually tuned for each subject. The results for
our model-based approach show an acceptance rate of 98.7%
with standard deviation of 1.0%. The unaugmented approach
performed at 93.5% acceptance rate with standard deviation of
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Figure 9: Comparison of the Unfiltered and Filtered Approaches

3.7%. The high acceptance rate and low variability that our re-
sults show give us a fairly good indication that integrating our
filter into the recognition process improves the recognition ac-
curacy.

A drawback of this experiment is that a significant amount
of custom parameter tuning was performed for each subject. As
a result, we decided to evaluate whether or not our methodol-
ogy would allow us to reduce the tuning effort required by each
experiment. We ran a second experiment to test this idea.

6.4. Pilot Experiment 2

The second experiment was performed to test whether or not
custom parameter tuning for different users is necessary. The
tuning phase is used to adjust the parameters for the Kalman
filters and blending functions. This is a common issue with
recognition methods based on neural networks, since they re-
quire training for each individual user. We decided to select the
parameters from one subject, tune them, and use those settings
for each of the other five subject’s tuning parameters. When we
ran the experiments, the results did not prove to be as good as
when individual parameter tuning for each filter was performed.
However, in some cases, for a small set of the gestures, we were
able to obtain normal results ranking above 98%.

Although, the results for this experiment were disappointing,
our method shows great success when tuning is made for each
individual user. Addressing the issue of avoiding the need for
individual subject parameter tuning is an important topic for fu-
ture research.

7. Discussion and Conclusions

We have developed a new model-based filter that incorporates a
dynamics model, a control system and motion state estimation
and applied it to the gesture recognition process. The dynamic
model gives us a way to represent the underlying mechanical
motion of the human arm. The control system acts as a means to
exert control over and provide guidance for the motion applied
by the dynamics. This is analogous to the human motor nervous
system. The control system was aided by a blending function
that supplements the driving torque controller, giving it better
guidance at the motion state level instead of at the torque level.



In the future, we would like to reduce the use of the blending
function and increase the sophistication of the model and con-
troller. This would show that the dynamics are acting solely
upon the recognition performance of input coming through our
filter.

Our filter proved to be effective in improving the perfor-
mance of the recognition process as shown by our expert-user
and pilot user studies. We showed this by comparing an unfil-
tered recognition process with one augmented with our model-
based filter. Our method works acceptably well for hard—to—
distinguish gesture sets and even better for very dissimilar sets.
The results definitely warrant further user evaluation studies.

Our method does involve a small amount of parameter tuning
and training for the error covariances. A lot of the tuning is
associated with the registration of the input and learned gestures.
Obviously, if the registration problem can be solved, a lot of the
tuning can be eliminated. It also might be the case that more
sophisticated models for the human motion or a more extensive
model of the human body would reduce the need for some of
the parameters.

One issue that our work did not address is the differences
that may occur with people tracing the same “end-effector” path
with different arm and joint configurations. For example, the
“bent-arm” arc used in the fourth expert-user experiment has
an equivalent wrist trajectory as the “straight-arm” arc had in
the first experiments. We analyzed only the wrist trajectories,
although we could have additionally analyzed either the elbow
positional trajectories or joint configuration trajectories. This in
effect increases the size of the gesture alphabet.

We also did not address the issue of co-articulation, which
involves the placement of the arm prior to and after the gesture
is performed. We purposely assumed the arm movements to be
independently performed and concentrated our effort on study-
ing the dynamic movements of the arm instead of the gestural
interaction aspects.

Based on our evaluation studies, we can conclude that our
motion adaptation filter makes a positive contribution to the per-
formance of gesture recognition for arm-based gestures. This
seems to imply that a model of human performance can be used
to eliminate some of the heuristic guess-work that must be done
to make a standard gesture recognizer work. In the future, we
would like to test this theory further by utilizing better mod-
els and control systems, applying the filter to other established
recognition methodologies (e.g., neural network and statistical
methods) and performing more extensive user studies.
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